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Abstract
We consider an elliptic generalization of the Schlesinger system (ESS)
with positions of marked points on an elliptic curve and its modular
parameter as independent variables (the parameters in the moduli space of
the complex structure). This system was originally discovered by Takasaki
(hep-th/9711095) in the quasi-classical limit of the SL(N) vertex model.
Our derivation is purely classical. ESS is defined as a symplectic quotient
of the space of connections of bundles of degree 1 over the elliptic curves
with marked points. The ESS is a non-autonomous Hamiltonian system with
pairwise commuting Hamiltonians. The system is bi-Hamiltonian with respect
to the linear and introduced here quadratic Poisson brackets. The latter are
the multi-colour form of the Sklyanin–Feigin–Odesski classical algebras. The
ESS is the monodromy independence condition on the complex structure for
the linear systems related to the flat bundle. The case of four points for a
special initial data is reduced to the Painlevé VI equation in the form of the
Zhukovsky–Volterra gyrostat, proposed in our previous paper.

PACS number: 02.30.Jr

1. Introduction

The Schlesinger system introduced in [1] is a system of first-order differential equations for
n > 3 matrices Sj (j = 1, . . . , n), depending on n points xk ∈ CP

1:

∂kSj = [Sk, Sj ]

xk − xj

, k �= j, ∂k = ∂xk
, (1.1)

∂kSk = −
∑
j �=k

[Sk, Sj ]

xk − xj

. (1.2)
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This system has the Hamiltonian form with respect to the linear (Lie–Poisson) brackets on
sl(N, C). The Hamiltonian

Hk =
∑
j �=k

〈SkSj 〉
xk − xj

(〈 〉 = tr)

defines the evolution with respect to the time xk . There exists the tau function expF , related
to the Hamiltonians [2]

∂kF = Hk.

The Schlesinger equations are the monodromy preserving conditions for the linear system on
CP

1: 
∂z +

∑
j

Sj

z − xj


 � = 0.

For 2×2 matrices and four marked points, the Schlesinger system is equivalent to the Painlevé
VI equation [3]. In this case, the position of three points can be fixed as (0, 1,∞) while x4

plays the role of an independent variable. Due to SL(2, C) gauge symmetry, we are left with
the second-order differential equation for the matrix element (1, 2) of S4 (see, for example,
[4]).

Here we replace CP
1 by an elliptic curve and define a similar system (the elliptic

Schlesinger system (ESS)). In this case, in addition to the coordinates of the marked points,
a new independent variable appears inevitably. It is the modular parameter of the curve, and
thereby we have an additional new Hamiltonian. This system was introduced originally by
Takasaki [5]. His derivation is based on the quasi-classical limit of the quantum system living
on a vertex of the SL(N, C) generalization of the XYZ model. Here we use another approach
to generic monodromy preserving systems developed earlier [6]. ESS arises as a symplectic
quotient of the symplectic space of connections of principle bundles of degree 1 over the
elliptic curves with n marked points.

The similar systems in their integrable versions were considered earlier in [7–9]. The
latter two papers deal with a slightly different system, related to bundles of degree zero. The
isomonodromic deformations corresponding to bundles of degree zero were investigated in
[6, 10].

Using our approach we reproduce the main properties of the rational Schlesinger
system. Namely, we prove that the ESS is a Hamiltonian system, describing interacting
non-autonomous Euler–Arnold tops on coadjoint orbits attributed to the marked points with
pairwise commuting Hamiltonians. The ESS is the monodromy preserving condition with
respect the modular parameter of the elliptic curve and positions of the marked points.
Moreover, we rewrite the ESS in terms of quadratic Poisson brackets. They are a multi-
colour version of the Sklyanin–Feigin–Odesski classical algebras [11, 12]. In conclusion,
for the four-point case and the matrices of order 2, we derive the Painlevé VI equation in
the form of the Zhukovsky–Volterra gyrostat, proposed in our previous paper [13]. It was
established there that the non-autonomous SL(2, C) Zhukovsky–Volterra gyrostat is equivalent
to the elliptic form of the Painlevé VI equation [14] proposed by Painlevé 1 year later after
Fuchs (see also [15]). The corresponding isomonodromy problem on an elliptic curve is
discovered only recently [16]. This paper is a continuation of [13], though it can be read
independently.
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2. Elliptic Schlesinger system

2.1. Definition

Let �τ = C/(Z + τZ) be an elliptic curve, with the modular parameter τ(Im mτ > 0) and

Dn = (x1, . . . , xn), xj �= xk, xk ∈ �τ ,

be the divisor of non-coincident points with the condition∑
xj ∈ (Z + τZ). (2.1)

Consider the space P(1)
n,N of n copies of the Lie coalgebra g∗ ∼ sl(N, C)∗, related to the

points of the divisor:

P(1)
n,N = ⊕n

j=1g
∗
j , g∗

j =
{

Sj =
∑

α∈Z̃
(2)
N

Sj
αtα

}
, (2.2)

where tα is the basis (B.7).5

Introduce operators acting from P(1)
n,N to the dual space ⊕n

j=1gj :

Ikj : g∗
k → gj , Sk

γ 
→ (Ikj )γ Sj
γ , (Ikj )γ = ϕγ (xj − xk), (2.3)

Jjj : g∗
j → gj , Sj

γ 
→ Jγ Sj
γ , Jγ = E2(γ̆ ), (2.4)

Jkj : g∗
k → gj , Sk

γ 
→ (Jkj )γ Sj
γ , (Jkj )γ = fγ (xj − xk), (2.5)

where ϕγ (x), E2(γ̆ ) and fγ (x) are defined by (B.10)–(B.15).
The positions of the marked points xj ∈ Dn, satisfying (2.1), and the modular parameter

τ are local coordinates in an open cell in the moduli space M1,n of elliptic curves with n
marked points. They play the role of times.

Definition 2.1. The elliptic Schlesinger system (ESS) is the consistent dynamical system on
P(1)

n,N with independent variables from M1,n:

∂j Sk = [Ikj (Sj ), Sk], k �= j, ∂k = ∂xk
, (2.6)

∂kSk = −
∑
j �=k

[Ijk(Sj ), Sk], (2.7)

∂τ Sj =
∑
k �=j

1

2πı
[Sj , Jkj (Sk)] +

1

4πı
[Sj , Jjj (Sj )], (2.8)

where the commutators are understood as the coadjoint action of gj on g∗
j .

The consistency of the system will be proved below.
In the basis tα

(
α ∈ Z̃

(2)
N

)
(B.7), the ESS takes the form

∂kS
j
α =

∑
γ∈Z̃

(2)
N

C(γ, α)Sk
γ S

j
α−γ ϕγ (xj − xk) (k �= j), (2.9)

5 The upper index (1) means that P(1)
n,N is equipped with the linear brackets (see (2.12)). In section 3, we introduce

quadratic brackets.
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∂kS
k
α =

∑
γ∈Z̃

(2)
N

C(γ, α)
∑
j �=k

S
j
α−γ Sk

γ ϕα−γ (xk − xj ), (2.10)

∂τS
k = 1

2πı

∑
γ∈Z̃

(2)
N

C(α, γ )


∑

k �=j

Sk
α−γ Sj

γ fγ (xk − xj ) + Sk
γ Sk

−γ E2(γ̆ )


 . (2.11)

Remark 2.1. Equations (2.9), (2.10) are consistent with the restriction on positions of the
marked points (2.1), i.e.

∑n
j=1 ∂j Sk = 0.

Remark 2.2. In the rational limit (Im mτ → ∞), (2.9) and (2.10) pass to the standard
Schlesinger system (1.1), (1.2) (see (A.9)).

As in the rational case, the ESS has some fundamental properties:

• The space P(1)
n,N is Poisson with respect to the linear Lie–Poisson brackets on g∗:{

Sj
α, Sk

β

}
1 = δjkC(α, β)S

j

α+β . (2.12)

ESS is a non-autonomous Hamiltonian system on P(1)
n,N :

∂kSj = {Hk, Sj , }1, ∂k = ∂xk
, (1, . . . , n), (2.13)

∂τ Sj = {H0, Sj }1, (2.14)

where

Hk = −
∑
j �=k

〈Ikj (Sk)Sj )〉 = −
∑
j �=k

∑
γ∈Z̃

(2)
N

Sk
γ S

j
−γ ϕγ (xj − xk), (2.15)

Hτ = H0 = − 1

2πı


∑

k �=j

〈Sj Jkj (Sk)〉 +
∑

j

〈Sj Jjj (Sj )〉



= − 1

2πı


∑

k �=j

∑
γ∈Z̃

(2)
N

Sj
γ Sk

−γ fγ (xk − xj ) +
∑

j

∑
γ∈Z̃

(2)
N

Sj
γ S

j
−γ E2(γ̆ )


 . (2.16)

The brackets (2.12) are degenerate. The symplectic leaves are n copies of coadjoint orbits
Oj (j = 1, . . . , n) of SL(N, C). Assume that all orbits are generic, and let cµ(j) be
corresponding Casimir functions of order µ(µ = 2, . . . , N). The phase space of ESS is

R(1)
n,N ∼ P(1)

n,N

/{cµ(j) = cµ(j)0} ∼
∏

Oj , (2.17)

dimR(1)
n,N = nN(N − 1). (2.18)

The ESS can be considered as a system of interacting non-autonomous SL(N, C) Euler–
Arnold tops, where operators (2.3)–(2.5) play the role of the inverse inertia tensors.

• The Hamiltonians satisfy the generalized Whitham equations [17]

∂jHk − ∂kHj = 0 (j, k = 0, . . . , n). (2.19)

In other words, the flows commute and equations (2.6)–(2.8) are consistent. These
conditions provide the existence of the tau function expF

Hj = ∂jF, H0 = ∂τF .
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• ESS is the monodromy preserving condition for flat rank N and degree 1 bundles over �τ

with respect to deformations of its moduli.

While the first two statements can be checked directly, the last one should be considered
separately. In next subsection, we prove all of them by the symplectic reduction from a trivial,
though infinite Hamiltonian system.

2.2. Derivation of ESS

Here we derive the ESS starting with a bundle over the elliptic curve �τ . Deformations of
the complex structure of �τ allow us to introduce the times and the Hamiltonians. The ESS
arises as a symplectic quotient of the space of vector bundles with respect to the action of the
SL(N, C) gauge group.

2.2.1. Vector bundles of degree 1 over elliptic curves. Let EN be a degree 1 and rank N
bundle over the elliptic curve �τ0 ∼ C/(Z + τ0Z) and Conn(EN) = {A} be the space of its
C∞ connections. It is a symplectic space with the form

ω0 = 1

2

∫
�

〈δA ∧ δA〉.

Let (z, z̄) be the complex coordinates on �τ0 :

z = x + τ0y, z̄ = x + τ̄0y (0 < x, y � 1).

For generic degree 1 bundles, the transition matrices corresponding to the two basic cycles
can be chosen as

A(z + 1, z̄ + 1) = QA(z, z̄)Q−1,
(2.20)

A(z + τ0, z̄ + τ̄0) = �̃A(z, z̄)�̃−1 +
2πı

N
dz,

where �̃(z, τ ) = −eN

(−z − τ0
2

)
� and Q,� are given by (B.1) and (B.2), respectively. It

means that there are no moduli parameters for degree 1 bundles.
The complex structure on �τ allows us to introduce the complex structure on Conn(EN).

Let

d ′ = ∂ + A, d ′′ = ∂̄ + Ā (∂ = ∂z, ∂̄ = ∂z̄)

be the corresponding components of the connection A.
In addition, we fix a quasi-parabolic structure at n marked points. It means that A has

simple poles at the marked points and

Res A|z=x0
j

= Sj = g−1Sj

0g ∈ Oj ⊂ g∗
j

while Ā is regular. The symplectic form acquires the additional Kirillov–Kostant terms

ω0 =
∫

�

〈δA ∧ δĀ〉 −
n∑

j=1

〈
Sj

0g
−1
j δgjg

−1
j ∧ δgj

〉
, gj ∈ SL(N, C). (2.21)

We denote the set Conn(EN) with the quasi-parabolic structure at the marked points as
R̃(1)

N,τ,n

(
Sj

0

)
.

In fact, we will work with the larger space

P̃ (1)
n,N = {

Conn(EN);⊕n
j=1g

∗
j

} = {(A, Ā), Sj , (j = 1, . . . , n)}
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equipped with the Poisson brackets

{Aα, Āβ} = δα,−β, (2.22){
Sj

α, Sk
β

} = δjkC(α, β)Sα+β . (2.23)

By fixing the values of the Casimir functions, we come down to R̃1
N,τ,n

(
Sj

0

)
.

2.2.2. Introducing Hamiltonians by deformation of complex structure. Deform the complex
structure as {

w = z − ε(z, z̄),

w̄ = z̄,
dw = (1 − ∂ε) dz − ∂̄ε dz̄. (2.24)

The Beltrami differential

µ = ∂̄ε(z, z̄)

1 − ∂ε(z, z̄)

(
∂

∂z
⊗ dz̄

)
(∂̄ = ∂z̄)

defines the new holomorphic structure—the deformed antiholomorphic operator annihilates
dw, while the antiholomorphic structure is kept unchanged:

∂w̄ = ∂̄ + µ∂, ∂w = ∂. (2.25)

In addition, assume that µ vanishes at the marked points µ(z, z̄)|x0
j

= 0.

Remark 2.3. In (2.24), coordinates (w, w̄) are not complex conjugated. They are independent
coordinates on the torus T 2. This choice of coordinates allows us to restrict ourselves by
holomorphic dependence on µ.

We specify the dependence of µ on the positions of the marked points in the following
way. Let U ′

j ⊃ Uj be two vicinities of the marked point xa such that U ′
j ∩ U ′

k = ∅ for j �= k.
Let χj (z, z̄) be a smooth function

χj (z, z̄) =
{

1, z ∈ Uj ,

0, z ∈ �g\U ′
j .

Introduce times related to the positions of the marked points tj = xj − x0
j . Then

µj = tjµ
0
j = tj ∂̄χj (z, z̄). (2.26)

The dependence of the modular parameter takes the form

µτ = tτµ
0
0 = tτ

τ0 − τ̄0
∂̄(z̄ − z)


1 −

n∑
j=1

χj (z, z̄)


 , tτ = τ − τ0. (2.27)

The functions µ0
j (j = 0, . . . , n) can be considered as a basis in a big cell M0

1,n of the moduli
space M1,n and the times play the role of coordinates in this basis:

µ = tτµ
0
τ +

n∑
j=1

tjµ
0
j . (2.28)

We deform ω0 by means of the Beltrami differential in such a way that ω0 acquires
non-trivial Hamiltonians. Let us go to a new pair of the connection components

(A, Ā) → (A, Ā′ = Ā − µA).
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It changes the form of ω0 (2.21) as

ω = ω0 − 1

2

∫
�τ

δ〈A2〉δµ. (2.29)

Expanding µ in the basis (2.28), we obtain

ω = ω0 −
n∑

j=0

δH̃ j δtj , t0 = tτ , (2.30)

where

H̃ j = 1

2

∫
�τ

〈A2〉∂̄χj (z, z̄) (j = 1, . . . , n), (2.31)

H̃ 0 = 1

2

∫
�τ

〈A2〉∂̄(z̄ − z)

(
1 −

n∑
j=1

χj (z, z̄)

)
. (2.32)

The form ω is defined on R1
N(�τ\Dn) × M0

1,n. The brackets (2.22), (2.23) and the
Hamiltonians H̃ j lead to the equations of motion

(1) ∂j Ā = Aµ0
j , (2) ∂jA = 0, (3) ∂jgk = 0 (∂j = ∂tj ). (2.33)

Evidently, these flows commute pairwise. Moreover, we have from (2.22), (2.31) and (2.32)
that

{H̃ j , H̃ k} = 0. (2.34)

Remark 2.4. It easy to see that for general non-autonomous multi-time Hamiltonian systems,
as for example ESS, the commutativity of flows amounts to the quasi-classical flatness

∂jHk − ∂kHj + {Hk,Hj } = 0.

If, moreover, (2.34) holds, then these conditions provide the existence of the tau function
∂i expF = Hi . In particular, the tau function exists for the flows (2.33).

2.2.3. ESS as symplectic quotient. Let G = {f (w, w̄)} be the group of smooth maps of the
deformed curve �τ to SL(N, C) with the quasi-periodicity

f (w + 1, w̄ + 1) = Q−1f (w, w̄)Q, f (w + τ, w̄ + τ̄ ) = �̃−1(w)f (w, w̄)�̃(w). (2.35)

Define its action on the fields as

A → f −1∂wf + f −1Af, Ā → f −1∂w̄f + f −1Āf,
(2.36)

gj → gjfj , fj = f (z, z̄)|z=xj
.

The form ω is invariant with respect to this action. Therefore, we can pass to the symplectic
quotient

R(1)
N,τ,n

(
Sj

0

) = R̃(1)
N,τ,n

(
Sj

0

)
//G.

Proposition 2.1.

• The symplectic quotient is the product of the coadjoint orbits

R(1)
N,τ,n

(
Sj

0

) ∼ ×n
j=1Oj .

• The ESS is a result of the symplectic reduction of system (2.33). Its Hamiltonians (2.15),
(2.16) are reduction of (2.31), (2.32) to R(1)

N,τ,n

(
Sj

0

)
.

• There exists the tau function expF for the ESS

∂j expF = Hj .
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Proof. The symplectic quotient is characterized by the following conditions:
(i) The moment constraints

F(A, Ā) =
n∑

j=1

Sj δ(w − xj , w̄ − x̄j ) − Nδ(w, w̄)t0, Sj = g−1
j Sj

0gj , (2.37)

where F(A, Ā) = ∂̄A + ∂(µA) + [Ā, A]. Note that the last term on the rhs of (2.37) comes
from (2.35) and (2.36).

(ii) The gauge fixing

Aw̄ = 0. (2.38)

It means that generic Aw̄ can be represented as the pure gauge f −1[Aw̄]∂w̄f [Aw̄]. As a result,
R(1)

N,τ,n

(
Sj

0

)
is described by the Lax matrix

L = −∂wff −1 + f Af −1, f = f [Aw̄].

The Lax matrix is a solution of the equation

∂w̄L =
n∑

j=1

Sj δ(w − xj , w̄ − x̄j ) − Nδ(w, w̄)Id

with the quasi-periodicity (2.20). From (A.14) and (B.16), we get

L(w) = − 1

N
E1(w)T0 +

n∑
j=1

∑
γ∈Z̃

(2)
N

Sj
γ ϕγ (w − xj )Tγ . (2.39)

Here, for convenience we have used the basis Tγ instead of tγ . We stay only with finite degrees
of freedom described by the ESS variables Sj . Thereby, the symplectic quotient R(1)

N,τ,n

(
Sj

0

)
coincides with the phase space of the ESS (2.17). �

The following lemma completes the essential part of the proof.

Lemma 2.1.

• The equations of motion (2.33) on the reduced space R(1)
N,τ,n

(
Sj

0

)
take the Lax form

∂kL − ∂wMk + [Mk,L] = 0 (k = 0, . . . , n), (2.40)

where

Mk = −
∑

γ∈Z̃
(2)
N

Sk
γ ϕγ (w − xk)Tγ (k �= 0), (2.41)

M0 = − 1

N
∂τ ln ϑ(w|τ)T0 +

1

2πı

n∑
l=1

∑
γ∈Z̃

(2)
N

Sl
γ fγ (w − xl)Tγ . (2.42)

• (2.40) coincides with the ESS (2.9)–(2.11).

Proof. Substituting in the equation of motion for A (2.33(2))

A = f −1∂f + f −1Lf

and defining Mk = −∂kff −1, we come to (2.40). It follows from (2.33(1)) that Mk satisfies
the equation ∂w̄Mk = −Lµ0

k with the same quasi-periodicity as L for j �= 0. To define
Mj we have used (B.16) and (B.17). The Lax equation with Mj(j �= 0) leads directly
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to (2.9). The Lax equation with M0 follows from the heat equation (A.12) and the Calogero
equation (A.19).

After the reduction, the Poisson space P̃(1)
n,N passes to P(1)

n,N with the brackets (2.23).

It follows from (2.31), (2.32) that the Hamiltonians Hj on P(1)
n,N can be read off from the

expansion of tr(L2) on the basis of the elliptic functions

1

2
tr(L(w))2 =

n∑
j=1

(
H2,jE2(w − xj ) + H1,jE1(w − xj )

)
+ H ′

0,

where H0 = − 1
2πı

(
H ′

0 − 4η1

N

)
and

∑
j H1,j = 0. Here H2,j = 1

2

∑
γ S

j
γ S

j
−γ are the quadratic

Casimir functions corresponding to the orbits Oj . Using (A.20) and (A.21), one can calculate
the coefficients H1,j and H0. They coincide with (2.15) and (2.16). The Hamiltonians
commute since their pre-images commute on P̃ (1)

n,N . Therefore, we have proved the consistency
of ESS and the existence of the tau function. �

2.2.4. Isomonodromy problem. Let � ∈ � be a section of a degree 1 vector bundle over �τ .
Consider the linear system


(∂w + A)� = 0,

(∂w̄ + Ā)� = 0,

∂k� = 0 (k = 0, . . . , n).

(2.43)

The compatibility condition of the first two equations is the flatness condition of the bundle.
The equations of motion (2.33) are the compatibility conditions of the last equations with
the first two equations. Let γ be a closed path on �τ ,�γ is the corresponding transformed
solution and �γ is the monodromy matrix

�γ = ��γ .

Then the last equation implies the independence of �γ on the moduli times tk . Therefore, the
equations of motion are the monodromy preserving conditions.

Let f be the gauge transformations � → f � that ‘kills’ Aw̄. Then (2.43) takes the form


(∂w + L)� = 0,

∂w̄� = 0,

(∂k + Mk)� = 0 (k = 0, . . . , n),

(2.44)

where L and Mk are given by (2.39) and (2.41), (2.42), respectively. The compatibility
condition of the last equation with the first one is the ESS in the Lax form (2.40). They are
the monodromy preserving conditions for the linear system of the first two equations.

3. Bi-Hamiltonian structure of ESS

3.1. Quadratic Poisson algebra

Consider a complex space of dimension nN2. We organize it in the following way. Attribute
to the marked points of the divisor Dnn copies of the GL(N, C)-valued elements

xj → S
j

0 T0 + Sj =
∑

a∈Z
(2)
N

Sj
a Ta.

Add to this set a variable S0 ∈ C and define

P(2)
n,N =


S0,

(
S

j

0 , Sj , j = 1, . . . , n
)∣∣∣∣∣

n∑
j=1

S
j

0 = 0


 .
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Proposition 3.1. The space P(2)
n,N is Poisson with respect to the quadratic brackets{

S0, S
j

0

}
2 = {

S
j

0 , Sk
0

}
2 = {

Sj
α, Sk

α

}
2 = 0, (3.1)

{
S0, S

k
α

}
2 =

∑
γ �=α

C(α, γ )


Sk

α−γ Sk
γ E2(γ̆ ) −

∑
j �=k

S
j
−γ Sk

α+γ fγ (xk − xj )


 , (3.2)

{
Sk

α, Sk
β

}
2 = C(α, β)S0S

k
α+β +

∑
γ �=α,−β

C(γ, α − β)Sk
α−γ Sk

β+γ fα,β,γ

+ C(α, β)Sk
0Sk

α+β(E1(ᾰ + β̆) − E1(ᾰ) − E1(β̆))

− C(α, β)
∑
j �=k

[
Sk

0S
j

α+βϕα+β(xk − xj ) − S
j

0 Sk
α+βE1(xk − xj )

]}
− 2

∑
j �=k

C(γ, α − β)Sk
α−γ Sk

β+γ ϕβ+γ (xk − xj )}, (3.3)

where fα,β,γ is defined by (B.15). For j �= k,{
Sj

α, Sk
β

}
2 =

∑
γ �=α,−β

C(γ, α − β)S
j
α−γ Sk

β+γ ϕγ (xj − xk)

−C(α, β)
(
S

j

0 Sk
α+βϕα(xj − xk) − Sk

0S
j

α+βϕ−β(xk − xj )
)
, (3.4)

and

{
S

j

0 , Sk
β

}
2 =

{
2
∑

γ C(γ,−β)S
j
−γ Sk

β+γ ϕγ (xk − xj ), j �= k,

−2
∑

m�=k

∑
γ C(γ,−β)Sk

−γ Sm
β+γ ϕβ+γ (xk − xm), j = k.

(3.5)

The brackets are extracted from the classical exchange algebra{
L

group
1 (z), L

group
2 (w)

}
2 = [

r(z − w),L
group
1 (z) ⊗ L

group
2 (w)

]
, (3.6)

where r is the classical Belavin–Drinfeld r-matrix [19]

r(z) =
∑

γ

ϕγ (z)Tγ ⊗ T−γ (3.7)

and Lgroup is the modified Lax operator

Lgroup =

S0 +

n∑
j=1

S
j

0 E1(z − xj )


 T0 + L̃j , L̃j =

∑
α

Sj
αϕα(z − xj )Tα. (3.8)

The Jacobi identity for P(2)
n,N follows from the classical Yang–Baxter equation for r(z). The

Poisson algebra P(2)
n,N defines the structure of the Poisson–Lie group on the product of Gj

attached to the marked points xj . The proof of lemma is given in appendix C.

Remark 3.1. For n = 1, we come to the classical Feigin–Odesski–Sklyanin algebras [11, 12]

{S0, Sα}2 =
∑
γ �=α

C(α, γ )Sα−γ Sγ E2(γ̆ ), (3.9)

{Sα, Sβ}2 = S0Sα+βC(α, β) +
∑

γ �=α,−β

C(γ, α − β)Sα−γ Sβ+γ f(ᾰ, β̆, γ̆ ). (3.10)
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3.2. Bi-Hamiltonian structure

The quadratic brackets onP(2)
n,N are degenerate. The function det L(z) is the generating function

for the Casimir functions Cµ(j) 6 (see [18]). Since it is a double periodic function, it can be
expanded in the basis of elliptic functions (A.6)

det L(z) = C0 +
n∑
j

C1(j)E1(z − xj ) + C2(j)E2(z − xj ) + · · · + CN(j)EN(z − xj ).

(3.11)

In particular, for the second-order matrices N = 2

C0 = S2
0 + 4η1

n∑
j=1

(
S

j

0

)2 −
∑

γ


 n∑

j=1

E2(γ̆ )Sj
γ Sj

γ − 2
∑
k �=j

Sj
γ Sk

−γ fγ (xk − xj )


 , (3.12)

C1(j) = S0Sj +
∑
k �=j

S
j

0 Sk
0E1(xj − xk) +

∑
k �=j

∑
γ

Sj
γ Sk

γ φγ (xj − xk), (3.13)

C2(j) = (
S

j

0

)2
+

∑
γ

(
Sj

γ

)2
. (3.14)

Due to the condition
n∑

j=1

C1(j) = 0, (3.15)

the number of the independent Casimir functions is Nn. The generic symplectic leaf

R2
n,N ∼ P(2)

n,N

/{(Cµ(j) = Cµ(j)(0)), µ = 1, . . . , N, j = 1, . . . , N}
has dimension

dim
(
R2

n,N

) = nN(N − 1). (3.16)

It coincides with the dimension of the ESS phase space R(1)
N,τ,n

(
Sj

0

)
defined in terms of the

linear brackets.
We can extend the linear Poisson manifold P(1)

n,N (2.2) by adding the variables S0, S
j

0 . In
terms of the linear brackets, they are the Casimir functions and therefore preserve the phase
space R(1)

N,τ,n

(
Sj

0

)
(2.17).

The form of brackets (3.2), (3.5) and the Casimir functions (3.12), (3.13) suggests the
following statement.

Proposition 3.2. In terms of the quadratic brackets, the ESS takes the form

∂kS
j
α = 1

2

{
Sk

0 , Sj
α

}
2 (j, k = 1, . . . , n),

∂τ S
j
α = 1

2

{
S0, S

j
α

}
2.

We have more for the second-order matrices. The Casimir functions of the quadratic brackets
serve as Hamiltonians in the representations ESS by the linear brackets

∂kS
j
α = {

C1(k), Sj
α

}
1 (j, k = 1, . . . , n),

∂τ S
j
α = 1

2πı

{
C0, S

j
α

}
1.

6 To distinguish them from the Casimir functions of the linear algebra, we denote them by capital letters.
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Therefore, for N = 2 the trajectories of the ESS lie on the intersection of the symplectic
leaves of P(2)

n,2 and P(1)
n,N . This phenomenon is a manifestation of the compatibility of the linear

and the quadratic Poisson brackets. The existence of compatible Poisson structures implies
the bi-Hamiltonian structure of integrable hierarchies related to these brackets [20]. We do
not touch this point here.

4. Reduction to the PVI

Consider the rank 2 case (N = 2) with four marked points n = 4. We slightly change here
our notation and enumerate the marked points as xj , j = 0, 1, 2, 3. Replace the basis Tα with
the Pauli matrices

T(1,0) → σ3, T(0,1) → σ1, T(1,1) → σ2,

and the basis index α = 1, 2, 3. As initial data we put the marked points on w = 0 and the
half-periods of

�τx0 = 0, x1 = τ

2
= ω2, x2 = 1 + τ

2
= ω1 + ω2, x3 = 1

2
= ω1,

and assume that

Sj
α = δj

αν̃α (j = 1, 2, 3), (4.1)

while S0
α = Sα are arbitrary. Since for N = 2γ̆ ∼ −γ̆ , it is not difficult to see that the

Hamiltonians Hj (j = 1, 2, 3) (2.15) vanish for this configuration, while (2.16) assumes the
form

Hτ = 1

2

∑
γ=1,2,3

(Sγ )2E2(γ̆ ) + Sγ ν ′
γ , ν ′

α = −ν̃α e(−ωα∂τωα)

(
ϑ ′(0)

ϑ(ωα)

)2

.

Therefore, the initial data (4.1) stay unchanged and we are left with the two-dimensional phase
space R(1) ⊂ R1

4,2. It is described by S = (S1, S2, S3) with the linear sl(2, C) brackets and
the Casimir function

c2 =
∑

γ=1,2,3

S2
γ . (4.2)

The equations of motion on R(1) take the form of the non-autonomous Zhukovsky–Volterra
gyrostat [13].

∂τSα = 2ıεαβγ (SβSγ E2(γ̆ ) + ν ′
βSγ ). (4.3)

Here �S = (S1, S2, S3) is the momentum vector, �J = (E2(ω2), E2(ω1 + ω2), E2(ω1)) is the
inverse inertia vector and �ν ′ = (ν ′

1, ν
′
2, ν

′
3) is the gyrostat momentum. This equation has the

bi-Hamiltonian structure based on the generalized Sklyanin algebra [13].
It was proved in [13] that there exists a transformation that allows us to pass from the

elliptic form of the Painlevé VI [14] to the non-autonomous Zhukovsky–Volterra gyrostat
(4.3).

The Lax matrices can be read off from their representations for the ESS (2.39), (2.42)

L = −1

2
∂w ln ϑ(w; τ)σ0 +

∑
α

(Sαϕα(w) + ν̃αϕα(w − ωα))σα,

M = −1

2
∂τ ln ϑ(w; τ)σ0 +

∑
α

−Sα

ϕ1(w)ϕ2(w)ϕ3(w)

ϕα(w)
σα + E1(w)L′,

where L′ = ∑
α(Sαϕα(w) + ν̃αϕα(w − ωα))σα . The former matrix defines the linear problem

for (4.3) in the form (2.44).
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Appendix A. Elliptic functions

We assume that q = exp 2π iτ , where τ is the modular parameter of the elliptic curve Eτ .
The basic element is the theta function:

ϑ(z|τ) = q
1
8

∑
n∈Z

(−1)n e
(

1

2
n(n + 1)τ + nz

)
= (e = exp 2πı). (A.1)

The Eisenstein functions:

E1(z|τ) = ∂z log ϑ(z|τ), E1(z|τ) ∼ 1

z
− 2η1z, (A.2)

where

η1(τ ) = 24

2π i

η′(τ )

η(τ )
, η(τ ) = q

1
24

∏
n>0

(1 − qn) (A.3)

are the Dedekind functions.

E2(z|τ) = −∂zE1(z|τ) = ∂2
z log ϑ(z|τ), E2(z|τ) ∼ 1

z2
+ 2η1. (A.4)

Relation to the Weierstrass functions:

ζ(z, τ ) = E1(z, τ ) + 2η1(τ )z, ℘ (z, τ ) = E2(z, τ ) − 2η1(τ ). (A.5)

The highest Eisenstein functions

Ej(z) = (−1)j

(j − 1)!
∂(j−2)E2(z) (j > 2). (A.6)

The next important function is

φ(u, z) = ϑ(u + z)ϑ ′(0)

ϑ(u)ϑ(z)
, (A.7)

φ(u, z) = φ(z, u), φ(−u,−z) = −φ(u, z). (A.8)

It has a pole at z = 0 and

φ(u, z) = 1

z
+ E1(u) +

z

2

(
E2

1(u) − ℘(u)
)

+ · · · , (A.9)

∂uφ(u, z) = φ(u, z)(E1(u + z) − E1(u)), (A.10)

lim
z→0

ln ∂uφ(u, z) = −E2(u). (A.11)

Heat equation:

∂τφ(u,w) − 1

2π i
∂u∂wφ(u,w) = 0. (A.12)
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Quasi-periodicity:

ϑ(z + 1) = −ϑ(z), ϑ(z + τ) = −q− 1
2 e−2π izϑ(z), (A.13)

E1(z + 1) = E1(z), E1(z + τ) = E1(z) − 2π i, (A.14)

E2(z + 1) = E2(z), E2(z + τ) = E2(z), (A.15)

φ(u, z + 1) = φ(u, z), φ(u, z + τ) = e−2πıuφ(u, z), (A.16)

∂uφ(u, z + 1) = ∂uφ(u, z), ∂uφ(u, z + τ) = e−2πıu∂uφ(u, z) − 2πıφ(u, z). (A.17)

The Fay three-section formula:

φ(u1, z1)φ(u2, z2) − φ(u1 + u2, z1)φ(u2, z2 − z1) − φ(u1 + u2, z2)φ(u1, z1 − z2) = 0.

(A.18)

Particular cases of this formula are the functional equations

φ(u, z)∂vφ(v, z) − φ(v, z)∂uφ(u, z) = (E2(v) − E2(u))φ(u + v, z), (A.19)

φ(u, z1)φ(−u, z2) = φ(u, z2 − z1)(E1(z1) − E1(z2)) − ∂uφ(u, z2 − z1), (A.20)

φ(u, z)φ(−u, z) = E2(z) − E2(u). (A.21)

Another important relation is

φ(v, z − w)φ(u1 − v, z)φ(u2 + v,w) − φ(u1 − u2 − v, z − w)φ(u2 + v, z)φ(u1 − v,w)

= φ(u1, z)φ(u2, w)f (u1, u2, v), (A.22)

where

f(u1, u2, v) = E1(v) − E1(u1 − u2 − v) + E1(u1 − v) − E1(u2 + v). (A.23)

One can rewrite the last function as

f(u1, u2, v) = − ϑ ′(0)ϑ(u1)ϑ(u2)ϑ(u2 − u1 + 2v)

ϑ(u1 − v)ϑ(u2 + v)ϑ(u2 − u1 + v)ϑ(v)
. (A.24)

Using (A.2), (A.4) and (A.9), one can derive from (A.22) some important particular cases.
One of them corresponding to v = u1 (or v = −u2) is the Fay identity (A.18). Another
particular case comes from u1 = 0 (or u2 = u):

φ(v, z − w)φ(−v, z)φ(u + v,w) − φ(−u − v, z − w)φ(u + v, z)φ(−v,w)

= φ(u1, z)(E2(u + v) − E2(v)). (A.25)

If u2 → −v, then (A.22) in the first non-trivial order takes the form for u1 = α, u2 = β

φ(−β, z − w)E1(w)φ(α + β, z) − φ(α, z − w)E1(z)φ(α + β,w)

= φ(α, z)φ(β,w)(E1(α + β) − E1(α) − E1(β)). (A.26)

Appendix B. Lie algebra sl(N , C) and elliptic functions

Introduce the notation

eN(z) = exp

(
2π i

N
z

)
and two matrices

Q = diag(eN(1), . . . , eN(m), . . . , 1), (B.1)
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� = δj,j+1 (j = 1, . . . , N, mod N). (B.2)

Let

Z
(2)
N = (Z/NZ ⊕ Z/NZ), Z̃

(2)
N ) = Z

(2)
N

∖
(0, 0) (B.3)

be the two-dimensional lattices of orders N2 and N2 − 1, respectively. The matrices
Qa1�a2 , a = (a1, a2) ∈ Z

(2)
N , generate a basis in the group GL(N, C), while Qα1�α2 , α =

(α1, α2) ∈ Z̃
(2)
N , generate a basis in the Lie algebra sl(N, C). More exactly, we introduce the

following basis in GL(N, C). Consider the projective representation of Z
(2)
N in GL(N, C):

a → Ta = N

2π i
eN

(
a1a2

2

)
Qa1�a2 , (B.4)

TaTb = N

2π i
eN

(
− a × b

2

)
Ta+b (a × b = a1b2 − a2b1). (B.5)

Here N
2π i eN

(− a×b
2

)
is a non-trivial 2-cocycle in H 2

(
Z

(2)
N , Z2N

)
. The matrices Tα, α ∈ Z̃

(2)
N ,

generate a basis in sl(N, C). It follows from (B.5) that

[Tα, Tβ ] = C(α, β)Tα+β, (B.6)

where C(α, β) = N
π

sin π
N

(α × β) are the structure constants of sl(N, C).
For N = 2, the basis Tα is proportional to the basis of the Pauli matrices:

T(1,0) = 1

πı
σ3, T(0,1) = 1

πı
σ1, T(1,1) = 1

πı
σ2.

The Lie coalgebra g∗ = sl(N, C) has the dual basis

g∗ =
{

S =
∑
Z̃

(2)
N

Sγ tγ
}
, tγ = 2πı

N2
T−γ , 〈Tαtβ〉 = δ−β

α . (B.7)

It follows from (B.6) that g∗ is a Poisson space with the linear brackets

{Sα, Sβ} = C(α, β)Sα+β . (B.8)

The coadjoint action in these bases takes the form

ad∗
Tα

tβ = C(α, β)tα+β . (B.9)

Let γ̆ = γ1+γ2τ

N
. Then introduce the following constants on Z̃

(2):

ϑ(γ̆ ) = ϑ

(
γ1 + γ2τ

N

)
, E1(γ̆ ) = E1

(
γ1 + γ2τ

N

)
, E2(γ̆ ) = E2

(
γ1 + γ2τ

N

)
,

(B.10)

φγ (z) = φ(γ̆ , z), (B.11)

ϕγ (z) = eN(γ2z)φγ (z), (B.12)

Define the function

fγ (z) = eN(γ2z)∂uφ(u, z)|u=γ̆ = ϕγ (z)(E1(γ̆ + z) − E1(γ̆ )). (B.13)

It follows from (A.10) that

fγ (z) = ϕγ (z)(E1(γ̆ + z) − E1(γ̆ )), (B.14)

fα,β,γ = E1(γ̆ ) − E1(ᾰ − β̆ − γ̆ ) + E1(ᾰ − γ̆ ) − E1(β̆ − γ̆ ). (B.15)

(See (A.23).)
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It follows from (A.7) that

ϕγ (z + 1) = eN(γ2)ϕγ (z), ϕγ (z + τ) = eN(−γ1)ϕγ (z), (B.16)

fγ (z + 1) = eN(γ2)fγ (z), fγ (z + τ) = eN(−γ1)fγ (z) − 2πıϕγ (z). (B.17)

The modification of (A.22) is

ϕγ (z − xj )ϕ−γ (z − xk) = ϕγ (xk − xj )(E1(z − xk) − E1(z − xj )) − fγ (xk − xj ). (B.18)

Appendix C. Proof of proposition 3.1

We prove here that in the classical exchange relations (3.6) one can get rid of the spectral
parameters (z, w). The result of this procedure is the quadratic Poisson algebra P(2)

n,N .
In (3.6), we have two types of matrix elements Tα ⊗ Tβ and T0 ⊗ Tβ . We compare

the coefficients on both sides of (3.6). They are meromorphic quasi-periodic functions on
�τ × �τ .

The proof is based on two statements:
• the meromorphic quasi-periodic functions on �τ with fixed quasi-periods are completely

determined by their residues;
• the right-hand side of (3.6) is non-singular on the diagonal z = w. It follows from the

fact that

r(z − w) ∼ 1

z − w
Tα ⊗ T−α

is adjoint invariant.
Then we compare residues of the meromorphic functions with the same quasi-periods and

poles on the lhs and rhs. It gives us the algebra P(2)
n,N .

First consider the left-hand side of (3.6).

(A) The matrix elements Tα ⊗ Tβ :
(A1) {

Sj
α, S

j

β

}
ϕα(z − xj )ϕβ(w − xj ).

(A2) k �= j: {
Sk

α, S
j

β

}
ϕα(z − xk)ϕβ(w − xj ) +

{
Sj

α, Sk
β

}
ϕα(z − xj )ϕβ(w − xk).

(B) The matrix elements T0 ⊗ Tβ :
(B1) {

S0, S
j

β

}
ϕβ(w − xj ).

(B2) k �= j: {
Sk

0 , S
j

β

}
E1(z − xk)ϕβ(w − xj ).

(B3) k = j: {
S

j

0 , S
j

β

}
E1(z − xj )ϕβ(w − xj ).

Finally, consider the matrix elements T0 ⊗ T0.{
S0, S

j

0

}
ϕγ (z − xj ),

{
Sk

0 , S
j

0

}
ϕγ (z − xk)ϕγ (w − xj ).
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But the matrix elements T0 ⊗ T0 are absent on the right-hand side. Thus, we come to the first
two identities in (3.1). Similarly, due to the structure of the r-matrix we do not have the matrix
elements Tα ⊗ Tα on the rhs. It leads to the last identity in (3.1).

Now come to the right-hand side. We use the commutation relations (B.5) in the group
GL(N, C) and choose a pair of terms in such a way that their sum is explicitly non-singular
on the diagonal z = w.

(C) The matrix elements Tα ⊗ Tβ :
(C1) k �= j:

1

2

∑
γ �=α,−β

C(γ, α − β) × (Sk
α−γ S

j

β+γ [ϕγ (z − w)ϕα−γ (z − xk)ϕβ+γ (w − xj )

−ϕα−β−γ (z − w)ϕα−γ (w − xk)ϕβ+γ (z − xj )]

+ S
j
α−γ Sk

β+γ [ϕγ (z − w)ϕα−γ (z − xj )ϕβ+γ (w − xk)

−ϕα−β−γ (z − w)ϕα−γ (w − xj )ϕβ+γ (z − xk)].

(C2) k = j:

1

2

∑
γ �=α,−β

C(γ, α − β) × S
j
α−γ S

j

β+γ [ϕγ (z − w)ϕα−γ (z − xj )ϕβ+γ (w − xj )

−ϕα−β−γ (z − w)ϕα−γ (w − xj )ϕβ+γ (z − xj )].

(C3) k �= j, γ = α:7

1

2
C(α, β) × (

S
j

0 Sk
β+α[ϕ−β(z − w)E1(w − xj )ϕβ+α(z − xk)

−ϕα(z − w)E1(z − xj )ϕβ+α(w − xk)]

+ Sk
0S

j

β+α[ϕ−β(z − w)E1(w − xk)ϕβ+α(z − xj )

−ϕα(z − w)E1(z − xk)ϕβ+α(w − xj )]
))

.

(C4) k = j, γ = α:

1

2
C(α, β)S

j

0 S
j

β+α[ϕ−β(z − w)E1(w − xj )ϕβ+α(z − xj )

−ϕα(z − w)E1(z − xj )ϕβ+α(w − xj )].

(C5)

1

2
C(α, β)

(
S0S

k
β+α[ϕ−β(z − w)ϕβ+α(z − xk) − ϕα(z − w)ϕβ+α(w − xk)]

+ S0S
j

β+α[ϕ−β(z − w)ϕβ+α(z − xj ) − ϕα(z − w)ϕβ+α(w − xj )]
)
.

(D) The matrix elements T0 ⊗ Tβ :
(D1) k �= j:

1

2

∑
γ �=−β

C(γ,−β) × (Sk
−γ S

j

β+γ [ϕγ (z − w)ϕ−γ (z − xk)ϕβ+γ (w − xj )

−ϕ−β−γ (z − w)ϕ−γ (w − xk)ϕβ+γ (z − xj )]

+ S
j
−γ Sk

β+γ [ϕγ (z − w)ϕ−γ (z − xj )ϕβ+γ (w − xk)

−ϕ−β−γ (z − w)ϕ−γ (w − xj )ϕβ+γ (z − xk)]).

7 The same expression we have for γ = −β.
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(D2) k = j:

1

2

∑
γ �=−β

C(γ,−β) × S
j
−γ S

j

β+γ [ϕγ (z − w)ϕ−γ (z − xj )ϕβ+γ (w − xj )

−ϕ−β−γ (z − w)ϕ−γ (w − xj )ϕβ+γ (z − xj )].

Note that in all expressions on the rhs, the second term becomes equal to the first one
after changing the order of summation γ → α − β − γ . Comparing expressions with the
same quasi-periods, we pass from the functions ϕ to φ and in this way use identities from
appendix A.

Consider first the matrix elements Tα ⊗ Tβ and the term (A1). The terms (C1) and (C3)
on the rhs have the same poles and quasi-periods. Comparing the residues, we obtain (3.4).

The terms of type (A2) should be compared with (C1)–(C5). Before comparing, one
should transform (C2) according to (A.22), (A.23) and (C4) according to (A.26). Then
(C1)–(C5) generate the rhs of (3.3).

Now consider the matrix elements T0 ⊗ Tβ .
Expression (D1) is periodic with respect to z and quasi-periodic with respect w. The

residue of the poles is

Res D1z=xj ,w=xk
= −Sk

−γ S
j

β+γ ϕ−β−γ (xj − xk)C(γ,−β).

This term being compared with (B2) contributes to the first line in (3.5). To come to second
line, observe that

Res D1z=xj ,w=xj
= −Sk

−γ S
j

β+γ ϕ−γ (xj − xk)C(γ,−β).

Moreover, (D1) contains also a term that is regular in z and has first poles in w.

Res D1w=xk
= −const. term Sk

−γ S
j

β+γ ϕγ (z − xj )ϕ−γ (z − xk)C(γ,−β).

Using (B.18) we obtain

Res D1w=xk
= Sk

−γ S
j

β+γ C(γ,−β)fγ (xk − xj ).

It should be compared with (B1). In this way, we come to the last sum in (3.2).
Finally, consider (D2). As above, we can pass from ϕ to φ. We apply (A.25) for

v = γ, u = β and then compare it with (B1). As a result, we complete the rhs of (3.2).
Thus, we have the complete balance between lhs and rhs.
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